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Cusp flows due to an extended sink in two dimensions
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Abstract. The steady two-dimensioanl potential flow of a finite-depth fluid into an extended or distributed sink,
in which the free surface dips to form a cusp above the centre of the sink, is examined. The extended sink is a
region where the vertical outflow velocityV is constant and uniform. Numerical solutions for the free-surface
profiles are obtained by use of a boundary-integral technique. Solutions are only found for the supercritical case
where the Froude numbers are greater than one. In the limiting case where the extended sink width tends to zero,
the problem reduces to that of a line sink beneath the free surface, and comparisons are made to existing results
for this type of flow.
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1. Introduction

Flows associated with the withdrawal of a fluid from a reservoir of some nature have been
given a fair amount of attention over the past couple of decades. Examples of such reservoirs
are dams, water reservoirs and cooling ponds (Imberger and Hamblin [1]), and the interest
may be motivated by a desire to control water quality. Most of the mathematical attention
given to these problems has been focused on the flow caused by a line sink or source be-
neath the free surface. Two types of flow are known to exist for this configuration, namely
stagnation-point flows, where the free surfaces rises to a stagnation point above the sink (see
for example Mekias and Vanden-Broeck [2]), and cusp flows, where the free surface dips to
form a vertically sloped cusp above the sink. That the cusp must be vertical is discussed in
Tuck and Vanden-Broeck [3]. We shall be concerned only with this second type of flow.

It should be noted that mathematically there is no distinction between the flow caused by a
line sink or a source, since the formulation depends only on the square of the Froude number.
which is a nondimensional measure of the far-field fluid velocity, so that there is no mechanism
for specifying the flow direction. Physically it would seem more likely that cusp solutions are
associated with a line sink rather than a source. In an experiment performed by Imberger
[4] with a line sink, stagnation point flows were found up to some critical Froude number,
at which point the surface ‘jumped’ to a cusp. This is evidence that cusp flows certainly
exist for a sink, but the fact that stagnation point flows exist for a sink, as well as a source,
complicates the issue. Tyvand [5] considered a small-time expansion for the unsteady flow
due to an impulsively started line source or sink in infinite depth, and found that there was
a rise or drop in the surface height above the source or sink, respectively. This indicates that
sources and sinks experience different time histories, but it is not clear that they could not both
evolve to the same steady state.

In three dimensions, steady cusp flows have not been observed for axisymmetric with-
drawal into a point sink. Forbes and Hocking [6] and Forbes, Hocking and Chandler [7] sought
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such solutions for the infinite and finite depth cases, respectively, using the techniques they
employed to find three-dimensional stagnation point solutions, but without success. However,
a number of publications (Zhou and Graebel [8], Miloh and Tyvand [9], and Xue and Yue
[10]) report transient free-surface dips, which are cusp-like in nature, as the free surface drops
into the sink, but again no steady cusp solutions are found. It seems likely that the finite extent
of any physical sink would become important once the free surface has dropped into the sink.
It is therefore possible that the steady cusp-like solutions with constant circulation of Forbes
anbd Hocking [11], which describe flow into a circular drain of finite radius, may exist as an
evolutionary endpoint for the transient flows.

For two-dimensional flow in an infinite depth fluid, a cusp solution for a line source was
found by Tuck and Vanden-Broeck [3] at a unique value of the Froude number. Hocking [12]
found cusp solutions for a line sink or source above a flat or sloping bottom, and this work was
continued by Vanden-Broeck and Keller [13]. For a sloping bottom only unique solutions are
found, but for a flat bottom, solutions are found for all values of the Froude numberF > 1.
Vanden-Broeck and Keller [13] also found a unique branch of cusp solutions for sub-critical
flow, F < 1. Hocking [14] and King and Bloor [15] found solutions in the infinite Froude
number limit for a source or sink above a flat bottom.

There are at least two logical extensions of the above problem. One is to consider the
withdrawal from a two-layer fluid as in Hocking [16] for example. Therein Hocking provides
a quite thorough review of the literature. Subsequently, Hocking [17] describes the persistence
of cusp-like solutions for supercritical flow in infinte depth, in which both the upper and lower
fluid are being withdrawn by the sink. In this case, the interface enters the line sink itself, and
therefore nonvertical cusp solutions can be sustained. Indeed, vertical cusp solutions represent
the limit at which point the upper layer ceases to flow, and the problem reduces to one of a
single layer.

Another possible extension is to consider a sink region of finite width. Hocking [18] and
later Hocking and Vanden-Broeck [19] consider the flow of a finite-depth fluid into a vertical
slot, which is quite similar to the subject of the present paper, although here, the withdrawal
occurs through a horizontal mat on the bottom. As mentioned above in the discussion of
the three-dimensional problem, it would seem likely that the finite extent of a physical sink
becomes important for flows in which the free surface approaches the sink.

We consider the two-dimensional flow into an extended or distributed sink of a finite-depth
fluid. The extended sink is a region along the bottom where the vertical outflow velocity is
specified, and we only consider the case where it is fixed to have a uniform valueV along the
length of the sink. In practice such a flow could be produced in a large rectangular tank with
some kind of mesh across a slot on the bottom of the tank connected to a pump to generate
the uniform outflow velocity.

Since this flow is symmetric about the centre of the extended sink and we neglect viscosity,
the resultant flow would be the same as if there were a vertical wall placed at the centre of the
sink. The cusp point would then be where the free surface smoothly attaches to the vertical
wall. We exploit this fact in the following mathematical formulation by explicitly considering
the wall to be present. This is found to lead to more accurate numerical solutions than if
the wall were not explicitly included, as the presence of the wall helps enforce the smooth
attachment, or the vertical free surface slope at the cusp point.

We formulate the problem as a boundary-integral equation, using Cauchy’s integral for-
mula, and this is then solved numerically by a damped Newton iterative scheme.
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Figure 1. A sketch in dimensionless coordinates showing the flow of fluid from right to left into an extended sink
in a corner.

2. Formulation of the problem

We model the free-surface flow from right to left of a fluid into an extended sink in a corner, as
shown in Figure 1, assuming a two-dimensional geometry. The origin of the(x, y) coordinate
system is chosen to coincide with the bottom left corner of the flow region. The extended
sink is the region along the bottom between the origin and the pointL, across which fluid is
withdrawn with a constant and uniform vertical velocityV .

All lengths have been nondimensionalised with respect to the undistributed far-stream
depthH , and all velocities have been nondimensionalised by the velocity scale

√
gH . The

far-stream depth is therefore 1, the width of extended sink becomesL and the far-stream
velocity becomesF = U/

√
gH , which is the Froude number, whereU is the dimensional

far-stream velocity towards the sink. The constant outflow velocityV through the extended
sink is, by conservation of mass,V = F/L. Lastly, the height of the free surface above the
sink, where it smoothly attaches to the vertical wall atx = 0 forming a cusp, is denoted byyc.

By assuming the flow is irrotational and the fluid is incompressible and inviscid, our task
is to solve Laplace’s equation in the fluid region for the velocity potentialφ, subject to the
appropriate boundary conditions. If we denote the horizontal and vertical fluid velocity com-
ponents byu andv, respectively, then the boundary condition along the flat bottomy = 0
is,

v =
{

0 x > L

−V 06 x 6 L
(1)

and on the vertical wallx = 0 we have

u = 0 06 y 6 yc. (2)

Let y = η(x) be the location of the free surface; then the boundary conditions ony = η
are Bernoulli’s equation,

1
2(u

2 + v2)+ η = 1
2F

2 + 1 (3)

and the kinematic condition,

u
dη

dx
= v. (4)
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Instead of attempting to solve Laplace’s equation directly, we shall formulate the problem
as a boundary integral along the free surface. To this end, we introduce the complex variable
z = x + iy and the complex potentialf (z) = φ + iψ , whereψ is the streamfunction.

We next construct an analytic functionχ(z) such that

χ(z) = df

dz
− dg

dz
= u− iv − (µ− iν). (5)

The functiong(z) is the complex potential obtained for flow into a corner with a ‘rigid lid’,
that being the case where the free surfacey = η(x) has been replaced by the solid boundary
y = 1. The horizontal and vertical velocity components of this rigid-lid solution areµ andν,
respectively. It can be shown (see Appendix) that the closed form solution for dg/dz is

dg

dz
= −2V

π
arctanh

(
coth

(πz
2

)
tanh

(
πL

2

))
. (6)

Reflecting the flow about thex-axis, we observe thatχ(z) has the desirable properties of being
analytic everywhere in the combined flow/image flow region, and tending to zero asx tends
to infinity. Cauchy’s Integral Formula is now used to give∮

0

χ(ξ)dξ

ξ − z = 0, (7)

whereξ is a point on the curve0 and we takez to lie on0 also. We define0 to be the positively
oriented contour made up of the free surface, the vertical wall along they-axis fromy = 0
to y = yc, the reflection of the wall abouty = 0, the image free surface and a vertical line at
x = ∞ connecting the free surface and its image. The pointz lying on the real boundary is
bypassed by a semicircle of vanishingly small radius.

We parametrise the free surface by the arclengtht , and denote the pointξ on the free
surface to bez(t) = x(t) + iy(t). The vertical wall is parametrised byτ , and the pointξ on
the wall is given by 0+ iy(τ) = iycτ .

In terms of the arclength parameter the kinematic condition (4) becomes

ψ ′(t) = 0 (8)

and Bernoulli’s equation (3) is

1
2φ
′(t)2+ y(t) = 1

2F
2+ 1. (9)

In addition, the arclength condition must also be satisfied, and this is

x′(t)2+ y′(t)2 = 1. (10)

Taking the imaginary part of Equation (7) yields the following two forms of the integral
equation, depending on whether the pointz lies on the free surface or the vertical wall. Forz
on the free surface, we denote its position byz(s) and after applying the kinematic condition
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(8) the integral equation becomes

−π [φ′(s)x′(s)− µ(s)] + −
∫ ∞

0

8(t)[y(t)− y(s)] −9(t)[x(t) − x(s)]
[x(t)− x(s)]2 + [y(t) − y(s)]2 dt

+
∫ ∞

0

8(t)[y(t) + y(s)] −9(t)[x(t) − x(s)]
[x(t) − x(s)]2 + [y(t)+ y(s)]2 dt

+
∫ 1

0

ycϒ(τ)[ycτ − y(s)]
x(s)2 + [ycτ − y(s)]2 dτ +

∫ 1

0

ycϒ(τ)[ycτ + y(s)]
x(s)2 + [ycτ + y(s)]2 dτ = 0. (11)

For convenience of display we have defined the intermediate variables

8(t) = [φ′(t)− µ(t)x′(t)− ν(t)y′(t)],
9(t) = [ν(t)x′(t)− µ(t)y′(t)],
ϒ(τ) = [v(τ)− ν(τ)].

(12)

Forz on the wall, we denote its position byiycσ , and then the integral equation reduces to∫ ∞
0

8(t)[y(t) − ycσ ] −9(t)x(t)
x(t)2 + [y(t) − ycσ ]2 dt +

∫ ∞
0

8(t)[y(t) + ycσ ] −9(t)x(t)
x(t)2 + [y(t) + ycσ ]2 dt

+−
∫ 1

0

ϒ(τ)

[τ − σ ] dτ +
∫ 1

0

ϒ(τ)

[τ + σ ] dτ = 0. (13)

Our task is now to find the functionsy(t), x(t), y′(t), x′(t), φ′(t), ϒ(τ) that satisfy Equations
(9–13).

3. Numerical method

In this section we use a numerical procedure similar to that employed by Forbes [20]. First,
however, we introduce the transformation

t = eρ − 1. (14)

Discretisation of the flow variables on the free surface onto a mesh ofN evenly spacedρ points
results in a clustering of points in the arclength variablet , about the cusp point(x(0), y(0)) =
(0, yc). The vertical wall is divided up onto a mesh ofM evenly spacedτ points. The notation
yi , for example, shall be used to represent the value of the functiony evaluated at theith
meshpointρi. Similarlyϒj = ϒ(τj ). These two different meshes coincide at the cusp point
ρ1 = 0, τM = 1.

The vector ofN +M − 3 unknowns is

[y′2, . . . , y′N,ϒ2, . . . , ϒM−1],

sincey′1 = 1 andϒ1 = 0 are known in advance andϒM can be calculated. Given an initial
guess at the vector of unknowns, we can evaluatex′i from the arclength condition (10). Then,
we use trapezoidal integration to calculateyi integrating back from the far-stream height of
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Figure 2. Three free surface profiles for the limiting
caseL → 0. The Froude numbers areF = 1, F =
1·5, F = 2 andF = ∞.

Figure 3. Three free surface profiles for a sink width
of L = 0·5 and Froude numbers areF = 1, F =
1·5, F = 2 andF = ∞.

.

y = 1 and xi integrating forward fromx = 0. The values obtained foryi are then used in
Bernoulli’s equation (9) to calculate the values ofφ′i . LastlyϒM = φ′1y′1− νM .

The integral equation (11) is evaluated at theN−1 half-mesh points{ρi+1/2, i = 1 . . . N−
1}, and the integral equation (13) is evaluated at theM − 2 half-mesh points{σj+1/2, j =
2 . . .M − 1}. Values for the flow variables at these half-mesh points are determined by linear
interpolation from the values at the whole-mesh points. The singularities in the Cauchy prin-
cipal value integrals can now be ignored since they occur symmetrically between mesh points.
Trapezoidal rule integration is used for both integrals.

This gives us a system ofN + M − 3 equations for theN +M − 3 unknowns and this
system is solved by a damped Newton’s method.

Typically 600 points are used on the free surface, truncating atρ = 2·5, giving1ρ =
0·0041667. In terms of arclength, this corresponds to truncating att ≈ 11·2, with a minimum
1t ≈ 1ρ and a maximum1t ≈ 0·051 at the truncation point. In the case of solutions for
F = 1 the same1ρ is used but the truncation point is extended out toρ = 3, t ≈ 19·1,
due to the slow convergence of such solutions in the far field to the undisturbed fluid depth
(see Figures 2 and 3). On the wall 80 points were typically used, giving a mesh spacing
1τ = 0·0125 there. The value of1y = yc1τ on the wall varies asyc varies. But, since
yc < 0·37 (see Section 4)1y < 0·0046.

Decreasing these step sizes was not found to affect the solutions significantly and compar-
isons with limiting solutions computed elsewhere were found to be in good agreement (see
Section 4), indicating well converged solutions.

4. Discussion of results

In the limit thatL → 0, the extended sink reduces to the familiar line sink and we shall
consider flow in this regime first. As has been found previously (Hocking [12], Vanden-Broeck
and Keller [13]), cusp solutions for flow into a line sink exist only for Froude numbersF > 1,
except for a unique branch of cusp solutions for sinks off the bottom occurring at Froude
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Table 1. A table of the cusp heightsyc versus Froude numbersF for the four
cases that the sink widthL = 0, L = 0·2, L = 0·5, andL = 0·7. The last entry
(marked∞∗) denotes the exact solution of King and Bloor [15].

F L = 0 L = 0·2 L = 0·5 L = 0·7
1·0 0·247 0·201 0·017 —

1·2 0·275 0·234 0·047 —

1·5 0·302 0·266 0·090 0·004

2·0 0·327 0·294 0·133 0·020

3·0 0·347 0·317 0·169 0·047

5·0 0·358 0·330 0·190 0·067

∞ 0·364 0·337 0·201 0·081

∞∗ 0·363

numbers less than one (Vanden-Broeck and Keller [13]). Since our sink always lies on the
bottom, this branch of solutions is not recovered.

An exact analytic solution exists in the limit as the Froude number tends to infinity, as found
by King and Bloor [15]. We compute a solution forF →∞ by analytically determining the
limiting forms of Equations (9, 11, 13) and then solving them, using the numerical method
outlined above. A comparison between our solution and the exact solution shows that they
are almost identical, and indeed show no graphical difference on the scale of the far-stream
height, unity. Our solutions unfortunately exhibit their greatest error right at the cusp point,
but a comparison between the computed cusp heightyc ≈ 0·364 with the exact cusp height
y∗c = 1− 2/π ≈ 0·36338 still shows very good agreement.

Provided that the truncation pointρN is suitably large, so thatyN ≈ 1(ρN ≈ 1·8 for
F = ∞, giving xN ≈ 5), yc is independent of the actual value ofρN , instead varying only
with the mesh sizes1ρ. Halving the mesh size on the free surface and the vertical wall results
in a slightly improved estimate for the cusp height, but it still rounds to 0·364. However due to
the matrix system that must be solved repeatedly in the numerical method, halving the mesh
size is much more computationally intensive.

In Figure 2 we graph three free surface profiles forL = 0. Shown are the profiles obtained
for the limiting Froude numbersF = 1 andF = ∞ and for the intermediate valuesF = 1·5,
andF = 2. A list of cusp heights versus Froude number is given in Table 1.

We now turn our attention back to the problem of the extended sink, whereL 6= 0. As
for theL = 0 case, solutions are only found to exist for supercritical flow,F > 1. Three
free-surface profiles are shown in Figure 3 forL = 0·5 andF = 1, F = 1·5, F = 2 and
F = ∞. In all three cases, the cusp height, where the free surface attaches smoothly to the
wall, can seem to be much lower than theL = 0 case in Figure 2. This can also be seen in an
examination of Table 1, which lists cusp height versus Froude number forL = 0 andL = 0·5,
as well asL = 0·2 andL = 0·7. Furthermore, most of the variation in these profiles can be
seen to occur betweenF = 1 and F= 2 for both theL = 0 and L= 0·5 cases. This fact has
been observed previously by Wen and Ingham [21] and Hocking [18].

For a given Froude number, as we increase the sink widthL the cusp heightyc decreases
until it finally drops to touch the sink aty = 0 whereL = Lcrit. This is, however, exactly the
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Figure 4. A plot of cusp heightyc vs sink widthL
for the Froude numbersF = 1, F = 1·5, F = 2, and
F = ∞. The markers indicate the actual computed
values. The cross at(0,0·3634) represents the value
for the exact solution.

Figure 5. (a) A sketch of the physicalz-plane and (b)
thez-plane mapped to the upper halfζ plane.

.

limiting configuration found in Koerber and Forbes [22], for which the critical sink width for
vertical entry is given by

Lcrit(F ) = F√
F 2+ 2

. (15)

ForF = 1, Lcrit(1) ≈ 0·57735 and in the limit asF →∞, Lcrit(∞) = 1.
In Figure 4, four plots ofyc versusL are shown, forF = 1, F = 1·5, F = 2, andF = ∞.

The computed cusp height atL = Lcrit doesn’t quite reach zero in any of these plots. This
is not surprising since the formulation explicitly builds in the presence of the vertical wall. A
comparison between the solutions presented here, and those calculated in Koerber and Forbes
[22] for the limiting cases thatL = Lcrit, show excellent agreement.

If L is increased beyondLcrit, no cusp solutions are found. Instead, we except the solutions
of Koerber and Forbes [22] to be obtained in these parameter regions, in which the free
surface is drawn down directly into the sink. Physically the process of increasingL involves
decreasingV in proportion, asV = F/L. So if the uniform outflow profile were being created
by some kind of mesh or mat over an outflow pump, then a constant outflow volume would
have to be maintained.

Alternatively, let us imagine a flow into a sink of fixed width with some large Froude
number and corresponding outflow velocity. As we decreaseF , a mimimumFmin will be
reached at which the cusp height has decreased to zero and after which no solutions of this
type can be found, as described above. From Equation (15) we haveFmin = 1 up untilL =
Lcrit(1) ≈ 0·577 and thenFmin→∞ asL→ 1. This is very similar to the behaviour shown in
Hocking [18] for flow into (from) a vertical slot, where a plot of the minimum Froude number
for which solutions exist against the slot width showsFmin = 1 up to a slot width of about 0·5
and thenFmin→∞ as the slot width tends to one.
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5. Summary and conclusions

Solutions have been obtained for all extended sink widthsL 6 1, unity being the case when
the sink width is the same as the far-stream depth. ForL 6 0·577 solutions exist for all values
of the Froude numberF > 1. For sink widths greater than this critical value, solutions only
exist down to a minimum Froude number greater than one, this minimum tending to infinity
asL approaches unity. This behaviour is very similar to that found by Hocking [18] for flow
into a vertical slot. No subcritical solutions were found.

For sink widths greater than unity, steady solutions of the type obtained by Koerber and
Forbes [22] are expected to occur. In these solutions, the free surface is drawn right down into
the sink. This conclusion is supported by the fact that our solutions in the present paper fail at
precisely the values of the drain width (or Froude number) at which the Koerber and Forbes
[22] solutions commence.

In the limit that the sink width tends to zero, the solutions for a line sink found by previous
authors (Hocking [12], Vanden-Broeck and Keller [13], King and Bloor [15]) are recovered,
and a table of cusp height versus Froude number is provided for reference. Furthermore, the
solutions computed here have been compared directly against those of King and Bloor [15]
and Koerber and Forbes [22], for the appropriate limiting configurations, and have been shown
to be very accurate.

The technique employed in this paper to find solutions for a uniform outflow velocity
profile across the extended sink could be used to find solutions for any vertical outflow velocity
profileV (x). Previous experience in the drawn-down case however (Koerber and Forbes [22]),
indicates that such solutions would be qualitatively similar to the ones presented here.

It remains unclear what happens in the subcritical case, with Froude numbers less than one.
It may be that stagnation point solutions occur, or that only time dependent solutions exist.

Appendix: The rigid-lid solution

Here we solve for the complex potentialg(z) that represents the solution for the flow into an
extended sink in a corner with a rigid lid. More specifically, we derive an expression for the
complex velocity

dg

dz
= µ− iν, (A1)

whereµ is the horizontal velocity component andν the vertical component for this flow.
In the physicalz-plane, the flow region is bounded by the flat bottomy = 0 for x > L and

the extended sink in the corner for 06 x 6 L, by the vertical wall atx = 0 for 0 6 y 6 1
and by the rigid lidy = 1. Since there is no flow through the walls, and the vertical outflow
velocity for the extended sink is−V , the boundary conditions are then

ν = 0 on y = 1, (A2)

µ = 0 on x = 0 (06 y 6 1), (A3)

ν = 0 on y = 0, x > L, (A4)

ν = −V on y = 0, 06 x 6 L. (A5)
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By making use of the conformal mapping

ζ = cosh(πz) (A6)

we map the flow region in thez-plane into the upper-halfζ -plane, as shown in Figure 5, where
ζ = ξ + iη andλ = cosh(πL). The entire boundary in the physical plane is now mapped to
the lineη = 0 in theζ -plane.

Flow in theζ -plane is then generated by a distribution of line sinks placed along the interval
ξ ∈ [1, λ] as follows;

g(ζ ) = −
∫ λ

1

m(σ)

2π
log(ζ − σ )dσ. (A7)

This distribution automatically satisfies the first three of the boundary conditions (A2–A4),
since there will be no vertical component of velocity along the lineη = 0 outside of the
interval [1, λ]. We now seek to calculate the sink strengthsm(σ) so that the final boundary
condition (A5) is satisfied.

We have

dg

dz
= dg

dζ

dζ

dz

and therefore obtain

µ− iν = dg

dζ
π
√
ζ 2− 1= 1

2

∫ λ

1

m(σ)
√
ζ 2− 1

ζ − σ dσ. (A8)

Now using the extended sink boundary condition (A5) together with Equation (A8) we have

−V = lim
η→0
=
{

1

2

∫ λ

1

m(σ)
√
ζ 2− 1

ζ − σ dσ

}
.

After evaluating the imaginary part we make use of the substitution

ξ − σ = ηθ
and then take the limit to yield the following expression for the sink strengths;

m(ξ) = 2V

π
√
ξ2− 1

. (A9)

Substituting (A9) back in Equation (A8) gives the following integral form for dg/dz,

dg

dz
= −V

π

∫ λ

1

√
ζ 2− 1√
σ 2− 1

1

ζ − σ dσ. (A10)

The integration in Equation (A10) can carried out in closed form, giving

dg

dz
= −2V

π
arctanh

(√
ζ + 1

ζ − 1

√
λ− 1

λ+ 1

)
. (A11)
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Finally, substituting in forζ andλ from Equation (A6), we obtain the solution

dg

dz
= −2V

π
arctanh

(
coth

(πz
2

)
tanh

(
πL

2

))
. (A12)

We take the real and imaginary parts of the above Equation (A12) to get

µ = − V
2π

log

(
(a + 1)2+ b2

(a − 1)2+ b2

)
, (A13)

ν = V

π

(
arctan

(
b

a + 1

)
+ arctan

(
b

1− a
))

, (A14)

where

a = c sinh(πx)

cosh(πx)− cos(πy)
,

b = −c sin(πy)

cosh(πx)− cos(πy)
,

c = tanh

(
πL

2

)
.
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